Jun 16, 2005

UMC's R&D Team Extends Traditional Nitrided Gate-oxide to beyond the 65nm node

HSINCHU, Taiwan, June 16, 2005 - UMC (NYSE: UMC; TSE: 2303), a world leading semiconductor foundry, today announced that its research and development team has achieved a significant engineering milestone by shrinking the Equivalent Oxide Thickness (EOT) of nitrogen doped silicon oxide (Oxy-nitride, SiON) gate dielectrics to approximately 1.0 nm using a new nitrogen profile engineering technique. This accomplishment allows more aggressive scaling of transistors to enhance overall semiconductor performance without the introduction of new materials.

"UMC's R&D team is continually developing new and innovative solutions to overcome ever-emerging challenges brought by advanced process technology," said S. F. Tzou, director of UMC's Advanced Module Development Division. "This latest achievement demonstrates that our nitrogen profile engineering technique can be used to improve performance at 65nm. This success also gives us confidence in the viability of extending SiON gate dielectrics for future CMOS applications beyond 65nm."

The novel SiON gate dielectric processing technique, unveiled by UMC engineers, enables the precision positioning of the nitrogen doping profile as well as accurate control of thickness. UMC engineers used a less than 3% nitrogen atomic concentration layer near the bottom Si-substrate / SiON interface, while using a higher concentration of nitrogen at the top interface of the poly silicon gate/SiON gate dielectric. The newly achieved effective oxide thickness of ~1.0 nm exhibits a gate leakage current of less than 10A/cm2 with improved PMOS threshold voltage stability, lower interface state density, and resistance to boron penetration. The enhanced mobility also signifies higher performance and process reliability at the same time.

Scaling down the conventional oxy-nitride to below 1.2nm of EOT typically results in the rapid escalation of gate leakage current. The use of a heavier nitrogen concentration, a favored method to reduce leakage, typically induces undesirable side effects such as mobility degradation and threshold voltage shift. Thus, this approach is not ideal for practical use. New high-k gate dielectric materials associated with metal gate electrodes have also been proposed to alleviate this barrier, though these inevitably come with new challenges of their own: namely, carrier mobility degradation, unacceptable threshold voltage instability, and dual work-function metal gate integration issues, etc. that would require intensive and costly research efforts to address.

Oxy-nitride, which has been used for decades in semiconductor manufacturing for legacy process technology generations, has remained a viable candidate, but only if a proven means could be implemented to suppress escalation of the gate leakage current while reducing thickness. Traditionally, increased power consumption due to leakage has been viewed as a trade-off with lower EOT to gain more speed. UMC has demonstrated through its new nitrogen profile engineering technique that existing oxy-nitride can be used to achieve greater transistor performance without having to sacrifice power consumption.

The details of this technology finding were reported in the Symposia on VLSI Technology and Circuits held at Kyoto, Japan on June16, 2005.

About UMC

UMC (NYSE: UMC, TSE: 2303) is a leading global semiconductor foundry that manufactures advanced process ICs for applications spanning every major sector of the semiconductor industry. UMC delivers cutting-edge foundry technologies that enable sophisticated system-on-chip (SoC) designs, including 90nm copper, 0.13um copper, and mixed signal/RFCMOS. UMC is also a leader in 300mm manufacturing; Fab 12A in Taiwan and Singapore-based Fab 12i are both in volume production for a variety of customer products. UMC employs approximately 10,500 people worldwide and has offices in Taiwan, Japan, Singapore, Europe, and the United States. UMC can be found on the web at http://www.umc.com.

Note From UMC Concerning Forward-Looking Statements

Some of the statements in the foregoing announcement are forward looking within the meaning of the U.S. Federal Securities laws, including statements about future outsourcing, wafer capacity, technologies, business relationships and market conditions. Investors are cautioned that actual events and results could differ materially from these statements as a result of a variety of factors, including conditions in the overall semiconductor market and economy; acceptance and demand for products from UMC; and technological and development risks.

 

UMC, In Taiwan

Alex Hinnawi

+886-2-2700-6999 ext. 6958

 
 
 
In the USA

KJ Communications

Eileen Elam

+(650) 917-1488

eileen@kjcompr.com

 
We value your privacy
Our website uses cookies to enhance user experience and functionality, and to analyze how this site is used in order to make future improvements. Select “Allow All Cookies” to continue, or go to “Manage Cookies” to set your preferences.
Allow All Cookies
Manage Cookies
We value your privacy
For the best user experience, select "Allow All" to consent to the use of all cookies. You can also choose to disable performance & functional cookies below. For more detail about the type of cookies used by UMC and third parties on this website, please refer to our Cookie Policy .
Allow All
Manage Consent Preferences
  • Essential Cookies
    Always Active
    These cookies are essential in order to enable you to move around the website and use its features, such as setting your privacy preferences, logging in or filling in forms. Without these cookies, services requested through usage of our website cannot be properly provided. Essential cookies do not require consent from the user under applicable law. You may configure your web browser to block strictly necessary cookies, but you might then not be able to use the website’s functionalities as intended.
  • Functionality & Performance Cookies
    These cookies collect information about how visitors use a website, for instance which pages visitors go to most often, and how visitors move around the site. They help us to improve the user friendliness of a website and therefore enhance the user's experience.
Confirm